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ABSTRACT 

 For biologists very hard time is with analyzing the uniqueness between two sample sequences such as 
DNA, RNA and protein sequences. A Bio-sequence represents a single, continuous molecule of nucleic acid or 
protein. It can be anything from a band on a gel to a complete chromosome. That’s to design for a huge database 
system which finds similarities between two sequences that have biological significance. In such condition we have 
to compromise in computation time, this can be overcome through implementation BLASTN process. In this paper 
the BLAST process will be working more efficient by a new approach for biological sequence database scanning. 
The scanning is performed with reconfigurable FPGA base hardware by comparing sequence one to many sequences 
from the database. The experimental sequence matching reduces the computation time of BLAST. [1] [2]. 
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1. INTRODUCTION 
 Database searching is quite big process in 
many of the application. Searching in a database for a 
real time system is real tough work to be performed. 
That to scanning genomic sequence database is a 
common and often repeated task in molecular biology. 
The searching should be performed faster because new 
sequence will be updated very quickly, so the data will 
be increasing in the database in exponential manner. At 
this case we are in need of a algorithm which performs 
very efficiently with the database for accessing the data 
i.e. biological sequence. One of the most widely and 
efficient search algorithm tool is BLASTN (Basic 
Local Alignment Search Tool-Nucleotide).  Process of 
BLAST: Using a heuristic method, BLAST finds 
similar sequences, not by comparing either sequence in 
its entirety, but rather by locating short matches 
between the two sequences as shown in fig. 1.  This 
process of finding initial words is called seeding. It is 
after this first match that BLAST begins to make local 
alignments. While attempting to find similarity in 
sequences, sets of common letters, known as words, are 
very important. For example, suppose that the sequence 
contains the following stretch of letters, AGCTGC. If 
a BLASTN was being conducted under default 

conditions, the word size would be 3 letters. In this 
case, using the given stretch of letters, the searched 
words would be AGC, GCT, CTG, and TGC. The 
heuristic algorithm of BLAST locates all common 
three-letter words between the sequence of interest 
and the hit sequence, or sequences, from the 
database. These results will then be used to build an 
alignment. After making words for the sequence of 
interest, neighborhood words are also assembled. 
These words must satisfy a requirement of having a 
score of at least the threshold T, when compared by 
using a scoring matrix. One commonly-used scoring 
matrix for BLASTN searches is BLOSUM62, 
although the optimal scoring matrix depends on 
sequence similarity. Once both words and 
neighborhood words are assembled and compiled, 
they are compared to the sequences in the database in 
order to find matches. The threshold 
score T determines, whether a particular word will be 
included in the alignment or not. Once seeding has 
been conducted, the alignment, which is only 3 
residues long, is extended in both directions by the 
algorithm used by BLAST. Each extension impacts 
the score of the alignment by either increasing or 
decreasing it. Should this score be higher than a pre-
determined T, the alignment will be included in the 
results given by BLAST. However, should this score 
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be lower than this pre-determined T, the alignment will 
cease to extend, preventing areas of poor alignment to 
be included in the BLAST results. Note, that increasing 
the T score limits the amount of space available to 
search, decreasing the number of neighborhood words, 
while at the same time speeding up the process of 
BLAST. 

 

 
Fig.1.Diagramatic representation of BLASTN 

 
2. .ALGORITHM 
 The paper deals with nucleotide molecular 
mostly, so more specific BLAST algorithm is required. 
BLASTN is an algorithm which deals only with 
nucleotide. This work can also be implemented in the 
DRC coprocessor system [1] [2] 
 
A. Word matching accelerator architecture 
Mainly BLASTN is used to find word matches. A word 
match is performed by fixing or assuming a string 
which has fixed length (w) w-referred to as “w-mer, 
that occurs both in query sequence and database 
sequence. Word matching flow diagram is as follows: 
Stage1: Implementation of parallel bloom filter. 
Stage 2:  False positive eliminator. 
Stage3: Redundancy eliminator. 
1) Stage 1: Implementation of parallel bloom filter 
The word-matching stage aims to find good alignments 
containing short exact matches between a query 
sequence. Such matches such as hash tables or suffix 
trees. An alternative solution to this filtration problem 
is to use a Bloom filter. A Bloom filter is defined by a 
bit-vector of length m, denoted as BF[1,…,m]. A 
family of k hash functions hi: SA, 1< i < k, is 
associated to the Bloom filter, where S is the key space 
and A={1,…,m} is the address space. A Bloom filter is 
a simple space-efficient randomized hashing data 
structure suitable for quick membership tests on FPGA 
implementation. A Bloom filter works in two steps. [1] 
[2] 
1).Programming: For a given set I of keys, I={x1,….,Xn}, 
I c S, the Bloom filter’s programming process is 
described as follows. First of all, initialize the bit 
vector m with zeros, then, for each key xj E I, compute 
its k hash values hi(xj) , I< i < k, subsequently, set 
the bit vector to one according to the k hash values. 

2).Querying: the querying process of the 
Bloom filter works the same as its programming 
process. For given key x, compute k hash values 
hi(x), I< I < k, is zero, then x E I, otherwise, x is said 
to be a member of set I with a certain probability. 
The conventional design for the identification of w-
mers using a bloom filter is shown in Fig. 2. 
 

 
Fig.2.Conventional design for identifying w-mers 
in a sequence database stream using bloom filter 

 
 The bloom filter has been programmed by 
parsing the query sequence into overlapping 
substrings of length w in the preprocessing step.Here 
is an example for the query sub strings. Assume w=3 
and the query sequence is “cttgtata” then ,the parsed 
sub strings are {“ ctt”,”ttg”,”tgt”,”gta”, 
”tat”,”ata”}.Although the conventional bloom filter 
architecture is efficient for membership test, its direct 
implementation is not suitable for high performance 
design on an FPGA. 

The computation efficiency will be compromised, 
if a single key was sent to all hash functions for 
membership testing, especially under low match rate 
conditions. Thus, our idea is to divide the k hash 
functions into different groups, with each group 
used for a different hash query. We apply three 
techniques to improve the throughput compared to 
the conventional Bloom filter architecture as shown 
in Fig 3.1 ,3.2. 

 1)  Partitioning: We first partition the Bloom 
filter vector into a number of smaller vectors, which 
are then queried by independent hash functions. 

2)  Pipelining: We further increase the 
throughput of our design using a new pipelining 
technique. 
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3)  Local stalling: We use a local stalling 
mechanism to guarantee all w-mers are tested by the 
Bloom filter. 

 In each clock cycle, it can support k/ P different 
hash queries. The hash functions used in the PPBF 
block are chosen from which it can be efficiently 
implemented in hardware. Suppose the input bit 
string X  with b bits is represented as X = < x1, x2 
, …, xb  >. We calculate the    
 i -th hash function over X , hi ( X ) as 
hi ( X ) = (di 1 · x1) ⊕ (di 2 · x2 ) ⊕ · · · ⊕ (dib · xb 
)  
where  “·”  is  a  bitwise  AND  operator  and  ⊕ is  
a  bitwise XOR  operator, di   are predetermined 
random  numbers in the range  [0,  …,  m − 1].  Both 
the AND a n d  XOR  operations can be 
implemented in parallel to shorten computation. 

 
 

 
Fig.3.1, 3.2 Architecture of Multiple Hits Detection 

Module. 
 
Parallel Architecture Design of BLAST Algorithm 

with Multiple Hits Detection. 
2) Multiple Hits Detection: Module-Multiple Hits 
Detection Module is used to detect 3-word hits and 
record the hits address in the query and the subject 
sequence. Compared to WPRBS method which could 
detect at most one hit in only one clock cycle, this 
design can detect multiple hits in only one clock 
cycle. The architecture of Multiple Hits Detection 
Module is shown in figure 3.1,3.2 As the figure 
illustrated,  there is a systolic array with 32 
processing units, every 3 units are connected to one 
3-input AND gates. Every 16 gates outputs are 
connected to a 16 bit register. The value of each 
register is sent to the corresponding hits information 
extraction units for recording the hits address in the 
query and the subject sequence. The systolic array 
and the hits information extraction unit are driven by 
two different clocks. At each clock out rising edge, 
query or subject sequence moves forward for one 
processing unit. 
 The whole architecture works as follows: 
first, a query sequence with 32 characters is 
forwarded into the systolic array so that each 
processing unit holds a character from the query 
sequence. Then the subject is driven into the systolic 
array by each internal clock rising edge.  Mean while 
,the incoming subject character and the query 
character which are held by the unit are compared, if 
they are identity, the logic “1” would be generated; 
otherwise, the logic “0” would be generated. The 
comparison result is an input of a 3-input AND gate. 
A hit is detected when logic “1” is generated from its 
output. So, the systolic array with 3-input AND gates 
can detect multiple hits at one internal clock rising 
edge.  Architecture of the processing unit in the 
systolic array is illustrated in Figure.5. As shown in 
figure 3.1, 3.2, outputs of 32 3-input AND gate goes 
into 2 16-bit registers. The Hits information 
extraction unit detects hits location and records them. 
The multiple hits detection module is a parallel, 
pipelined architecture. The systolic array with 32 
processing units cooperates with 32 3-input AND 
gates to detect hits in both sequences. Hits 
information extraction block records those hits 
location. 
 
3) Hits Combination Block: If there is a high 
similarity between query and subject sequence, the 
multiple hits detection module may output a large 
amount of hits per clock cycle. For instance, two 
adjacent hits “ATK” and “TKP” are found but they 
are actually one hit” ATKP”. If they are not 
combined into one hit, they would have been 
recorded twice .Hence this block can detect 
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overlapping hits and merge them to reduce verbose hits 
and maintain the sensitivity of BLAST. 
 

 
 Fig.4.Hits Combination Block 
  
This block contains a Hits (First In First Out)FIFO 
buffer which is used to store hits location address from 
both query and subject sequence. The data flow in this 
block is shown in Fig. 4. 

 
 

Fig.5.Architecture of processing unit of multiple hits 
detection module 

4) Stage 2:  False positive elimination. 
The objective of this stage is to find all false 

positive matches generated by bloom filter and get the 
corresponding position information in the query 
sequence for the true positive words. The second sub 
stage of our word-matching accelerator design is 
false-positive elimination, which includes two 
objectives: 

1)  Find all false-positive matches generated by 
the Bloom filter; 

2)  Get the corresponding position information in 
the query sequence for true-positive w-mers. 

One solution for this sub stage is to use a hash lookup 
table. The position information of each w-mer from 
the query sequence is  stored  in  the  hash  table.  A 
hash  table  with 
1 million entries storing position information for a 
100-kbase query sequence requires at least 17 Mbits 
of memory space (17 bits are needed to represent 100 
k positions). It is clear that the memory required is 
significantly greater than that provided by the on-chip 
BRAMs. Thus, we store the hash table in an external 
SDRAM attached to the FPGA. 

Hash collisions and duplicate keys are two common 
prob- lems for simple hashing strategies. The former 
will hash two different queries to the same 
location, while the latter may miss  additional 
position information. Both  of  them require extra 
access to the off-chip DRAM to get the correct data, 
which could introduce potential performance 
bottlenecks. In previously reported designs, [1] [2] 

 a perfect hash function has been applied to 
construct the hash table. A perfect hash function for 
a set of n keys maps each key to a distinct table 

 
Fig. 6.Hash Table 

 
 

entry with no collisions among the keys in the set 
is shown in figure 6. However, a perfect function 
is not easy to generate, especially when n is 
large. In addition, the representation of the perfect 
hash function usually needs a significant amount of 
FPGA resource and may compete with the Bloom 
filter design. The Mercury BLASTN design 
implements the hash table using a near- perfect 
hashing strategy, which bypasses the constraint 
for a perfect hash function. However, 
considerable effort is still required to get the “near-
perfect” hash functions. Cuckoo hashing is another 
effective hash strategy used to avoid hash collision,  
where  two  independent  hash  functions  are used 
for a single hash query. However, the additional 
hash table access may reduce the overall 
performance and, in rare cases, hash collision can 
still appear. In our design, we try a less complicated 
approach with few hash collisions, called a bucket 
hash. 

Our idea works as follows. Although it is difficult to 
find a perfect hash for all n keys, it might be easier 
to find a perfect hash function for a subset of keys, if 
the size of the subset is small enough. Bucket 
hashing works as follows. [1] [2] 
1)  Sort the query w-mers into different buckets 
according to their prefix (if the prefix length is 
properly chosen, the number of w-mers in a given 
bucket is relatively small). 



An Improved Efficiently and Computation Time for Hit Detection 

 

goniv Publications Page 37 

2)  Find a simple hash function that is collision-
free for all w-mers in the same bucket. If it is not 
possible to find such a perfect hash function, uses 
the hash function with the minimum hash 
collisions. 
3)  Construct a quick lookup table (QLT) which 
stores the “collision-free” hash functions for each 
bucket.  

 
.5) Stage 3: Redundancy eliminator: To avoid repeated 
generation of the same sequence alignment, we go for 
this stage. By doing such procedure we can able to 
reduce the words. We only eliminate “true 
overlapping” words to the registers unit. If two 
sequences suggest same alignment matches then one of 
those matches can be taken the concept of overlapping. 

III. PERFORMANCE 
Once the word matching stage gets completed then by 
using verilog language and DRC co processor [1] [2] ( 
i.e. a process supports to the main processor of the 
system) the implementation has been performed. The 
main processor will be Xilinx Virtex-5 FPGA chip. 
The  DRC has been considered has a co-processor 
because it stores large volume of off-chip data using 
the DRC system’s memory which consists of up to 8 
GB of DDR2 SDRAM with a maximum bandwidth 3.2 
GB/s and 512 MB of low latency RAM with a 
maximum bandwidth of 1.4 GB/s. In each clock cycle, 
the parallel Bloom filter can receive up to 16 new w- 
mers to do the membership examination from local 
buffers. 
 
4.  ANALYSIS 

Our design reports more 15-mer hits compared to 
the NCBI BLASTN. In our word-matching 
accelerator, the Bloom filter only introduces false –
positive results with no false negatives, which 
guarantees no sensitivity loss for the true matches. 
The off-chip hash table structure, which covers all 
situations (duplicate hits and collision hits can be 
examined by looking up the secondary table and the 
duplicate table, correspondingly), eliminates all the 
false positives from the Bloom filter stage. Thus, 
our FPGA design can report all 15-mer hits between 
the query sequence and the database sequence. In 
fact, the NCBI software is designed to report fewer 
hits. It applies several optimizations to accelerate 
the word-matching search process. For example, for 
a 100 Kbase query, the software first scans the 
database sequence for 10-mer matches with step 
length two, then ,extends one extra base in both 
sides to get a 15-mer match with the search 
terminating once a match is found, if a long k-mer 
(k>15) match exists,15-mer hit losses will appear. 

The lost hits are expected to be re-examined by 
the ungapped extension stage which extends hits 
base by base in both directions. However, 
sensitivity loss might appear due to optimizations 
applied in the word-matching stage of NCBI 
BLASTN software program. For example, for the 
100 kbase query sequence, the hits from our 
FPGA design can generate 1270 HSPS, while the 
hits from NCBI stage can generate 1212 HSPS. 
 
 
5. RESULT 

 
 

Fig.8.simulation result 
 
 The input sequence is a 15 genetic code 
represented in hexadecimal format. 1 genetic code 
is represented by 24 bits .The query sequence is yet 
another 15 genetic code represented in hexadecimal 
format from the database .Both the sequences are 
compared, if hit is found between any two 
sequences output will be 1 else in a case of 
mismatch output will be 0.Hence output is a 15 bit 
code which represents the hit between the 
sequences. The time consumption for comparing 15 
genetic code is 300 ns. Refer Fig.8. 
 
6. .CONCLUSION 
 In this paper, I have dealt about increasing 
the computation time for finding hit detection in 
BLASTN using three sub stages, a parallel bloom 
filter, an off-chip hash table, and a match redundancy 
eliminator. Finding hits is the most computationally 
time-consuming step in BLASTN. The performance 
is faster than other approach used in other 
architectures. The comparison of my technique with 
that of NCBI BLASTN shows a better performance 
with limited resource utilization  
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