
An Improved Efficiently and Computation Time for Hit Detection

Indian Journal of Electrical Engineering and Informatics (IJEEI)
Vol.2.No.1 2014pp 33-38

available at: www.goniv.com
Paper Received :05-03-2014
Paper Published:28-03-2014

Paper Reviewed by: 1. John Arhter 2. Hendry Goyal
Editor : Prof. P.Muthukumar

goniv Publications Page 33

AN IMPROVED EFFICIENTLY AND COMPUTATION TIME FOR HIT
DETECTION

1GOMATHI.R , 2A.D. KHAMALA KHANNEN
Department of Electronics and Communication Engineering,

gomathi.rajen@gmail.com

ABSTRACT

 For biologists very hard time is with analyzing the uniqueness between two sample sequences such as
DNA, RNA and protein sequences. A Bio-sequence represents a single, continuous molecule of nucleic acid or
protein. It can be anything from a band on a gel to a complete chromosome. That’s to design for a huge database
system which finds similarities between two sequences that have biological significance. In such condition we have
to compromise in computation time, this can be overcome through implementation BLASTN process. In this paper
the BLAST process will be working more efficient by a new approach for biological sequence database scanning.
The scanning is performed with reconfigurable FPGA base hardware by comparing sequence one to many sequences
from the database. The experimental sequence matching reduces the computation time of BLAST. [1] [2].

Keywords: biological sequence, significance comparing, word-matching, computation time.

1. INTRODUCTION
 Database searching is quite big process in
many of the application. Searching in a database for a
real time system is real tough work to be performed.
That to scanning genomic sequence database is a
common and often repeated task in molecular biology.
The searching should be performed faster because new
sequence will be updated very quickly, so the data will
be increasing in the database in exponential manner. At
this case we are in need of a algorithm which performs
very efficiently with the database for accessing the data
i.e. biological sequence. One of the most widely and
efficient search algorithm tool is BLASTN (Basic
Local Alignment Search Tool-Nucleotide). Process of
BLAST: Using a heuristic method, BLAST finds
similar sequences, not by comparing either sequence in
its entirety, but rather by locating short matches
between the two sequences as shown in fig. 1. This
process of finding initial words is called seeding. It is
after this first match that BLAST begins to make local
alignments. While attempting to find similarity in
sequences, sets of common letters, known as words, are
very important. For example, suppose that the sequence
contains the following stretch of letters, AGCTGC. If
a BLASTN was being conducted under default

conditions, the word size would be 3 letters. In this
case, using the given stretch of letters, the searched
words would be AGC, GCT, CTG, and TGC. The
heuristic algorithm of BLAST locates all common
three-letter words between the sequence of interest
and the hit sequence, or sequences, from the
database. These results will then be used to build an
alignment. After making words for the sequence of
interest, neighborhood words are also assembled.
These words must satisfy a requirement of having a
score of at least the threshold T, when compared by
using a scoring matrix. One commonly-used scoring
matrix for BLASTN searches is BLOSUM62,
although the optimal scoring matrix depends on
sequence similarity. Once both words and
neighborhood words are assembled and compiled,
they are compared to the sequences in the database in
order to find matches. The threshold
score T determines, whether a particular word will be
included in the alignment or not. Once seeding has
been conducted, the alignment, which is only 3
residues long, is extended in both directions by the
algorithm used by BLAST. Each extension impacts
the score of the alignment by either increasing or
decreasing it. Should this score be higher than a pre-
determined T, the alignment will be included in the
results given by BLAST. However, should this score

http://www.goniv.com/
http://en.wikipedia.org/wiki/BLOSUM62

An Improved Efficiently and Computation Time for Hit Detection

goniv Publications Page 34

be lower than this pre-determined T, the alignment will
cease to extend, preventing areas of poor alignment to
be included in the BLAST results. Note, that increasing
the T score limits the amount of space available to
search, decreasing the number of neighborhood words,
while at the same time speeding up the process of
BLAST.

Fig.1.Diagramatic representation of BLASTN

2. .ALGORITHM
 The paper deals with nucleotide molecular
mostly, so more specific BLAST algorithm is required.
BLASTN is an algorithm which deals only with
nucleotide. This work can also be implemented in the
DRC coprocessor system [1] [2]

A. Word matching accelerator architecture
Mainly BLASTN is used to find word matches. A word
match is performed by fixing or assuming a string
which has fixed length (w) w-referred to as “w-mer,
that occurs both in query sequence and database
sequence. Word matching flow diagram is as follows:
Stage1: Implementation of parallel bloom filter.
Stage 2: False positive eliminator.
Stage3: Redundancy eliminator.
1) Stage 1: Implementation of parallel bloom filter
The word-matching stage aims to find good alignments
containing short exact matches between a query
sequence. Such matches such as hash tables or suffix
trees. An alternative solution to this filtration problem
is to use a Bloom filter. A Bloom filter is defined by a
bit-vector of length m, denoted as BF[1,…,m]. A
family of k hash functions hi: SA, 1< i < k, is
associated to the Bloom filter, where S is the key space
and A={1,…,m} is the address space. A Bloom filter is
a simple space-efficient randomized hashing data
structure suitable for quick membership tests on FPGA
implementation. A Bloom filter works in two steps. [1]
[2]
1).Programming: For a given set I of keys, I={x1,….,Xn},
I c S, the Bloom filter’s programming process is
described as follows. First of all, initialize the bit
vector m with zeros, then, for each key xj E I, compute
its k hash values hi(xj) , I< i < k, subsequently, set
the bit vector to one according to the k hash values.

2).Querying: the querying process of the
Bloom filter works the same as its programming
process. For given key x, compute k hash values
hi(x), I< I < k, is zero, then x E I, otherwise, x is said
to be a member of set I with a certain probability.
The conventional design for the identification of w-
mers using a bloom filter is shown in Fig. 2.

Fig.2.Conventional design for identifying w-mers
in a sequence database stream using bloom filter

 The bloom filter has been programmed by
parsing the query sequence into overlapping
substrings of length w in the preprocessing step.Here
is an example for the query sub strings. Assume w=3
and the query sequence is “cttgtata” then ,the parsed
sub strings are {“ ctt”,”ttg”,”tgt”,”gta”,
”tat”,”ata”}.Although the conventional bloom filter
architecture is efficient for membership test, its direct
implementation is not suitable for high performance
design on an FPGA.

The computation efficiency will be compromised,
if a single key was sent to all hash functions for
membership testing, especially under low match rate
conditions. Thus, our idea is to divide the k hash
functions into different groups, with each group
used for a different hash query. We apply three
techniques to improve the throughput compared to
the conventional Bloom filter architecture as shown
in Fig 3.1 ,3.2.

 1) Partitioning: We first partition the Bloom
filter vector into a number of smaller vectors, which
are then queried by independent hash functions.

2) Pipelining: We further increase the
throughput of our design using a new pipelining
technique.

An Improved Efficiently and Computation Time for Hit Detection

goniv Publications Page 35

3) Local stalling: We use a local stalling
mechanism to guarantee all w-mers are tested by the
Bloom filter.

 In each clock cycle, it can support k/ P different
hash queries. The hash functions used in the PPBF
block are chosen from which it can be efficiently
implemented in hardware. Suppose the input bit
string X with b bits is represented as X = < x1, x2
, …, xb >. We calculate the
 i -th hash function over X , hi (X) as
hi (X) = (di 1 · x1) ⊕ (di 2 · x2) ⊕ · · · ⊕ (dib · xb
)
where “·” is a bitwise AND operator and ⊕ is
a bitwise XOR operator, di are predetermined
random numbers in the range [0, …, m − 1]. Both
the AND a n d XOR operations can be
implemented in parallel to shorten computation.

Fig.3.1, 3.2 Architecture of Multiple Hits Detection

Module.

Parallel Architecture Design of BLAST Algorithm

with Multiple Hits Detection.
2) Multiple Hits Detection: Module-Multiple Hits
Detection Module is used to detect 3-word hits and
record the hits address in the query and the subject
sequence. Compared to WPRBS method which could
detect at most one hit in only one clock cycle, this
design can detect multiple hits in only one clock
cycle. The architecture of Multiple Hits Detection
Module is shown in figure 3.1,3.2 As the figure
illustrated, there is a systolic array with 32
processing units, every 3 units are connected to one
3-input AND gates. Every 16 gates outputs are
connected to a 16 bit register. The value of each
register is sent to the corresponding hits information
extraction units for recording the hits address in the
query and the subject sequence. The systolic array
and the hits information extraction unit are driven by
two different clocks. At each clock out rising edge,
query or subject sequence moves forward for one
processing unit.
 The whole architecture works as follows:
first, a query sequence with 32 characters is
forwarded into the systolic array so that each
processing unit holds a character from the query
sequence. Then the subject is driven into the systolic
array by each internal clock rising edge. Mean while
,the incoming subject character and the query
character which are held by the unit are compared, if
they are identity, the logic “1” would be generated;
otherwise, the logic “0” would be generated. The
comparison result is an input of a 3-input AND gate.
A hit is detected when logic “1” is generated from its
output. So, the systolic array with 3-input AND gates
can detect multiple hits at one internal clock rising
edge. Architecture of the processing unit in the
systolic array is illustrated in Figure.5. As shown in
figure 3.1, 3.2, outputs of 32 3-input AND gate goes
into 2 16-bit registers. The Hits information
extraction unit detects hits location and records them.
The multiple hits detection module is a parallel,
pipelined architecture. The systolic array with 32
processing units cooperates with 32 3-input AND
gates to detect hits in both sequences. Hits
information extraction block records those hits
location.

3) Hits Combination Block: If there is a high
similarity between query and subject sequence, the
multiple hits detection module may output a large
amount of hits per clock cycle. For instance, two
adjacent hits “ATK” and “TKP” are found but they
are actually one hit” ATKP”. If they are not
combined into one hit, they would have been
recorded twice .Hence this block can detect

An Improved Efficiently and Computation Time for Hit Detection

goniv Publications Page 36

overlapping hits and merge them to reduce verbose hits
and maintain the sensitivity of BLAST.

 Fig.4.Hits Combination Block

This block contains a Hits (First In First Out)FIFO
buffer which is used to store hits location address from
both query and subject sequence. The data flow in this
block is shown in Fig. 4.

Fig.5.Architecture of processing unit of multiple hits
detection module

4) Stage 2: False positive elimination.
The objective of this stage is to find all false

positive matches generated by bloom filter and get the
corresponding position information in the query
sequence for the true positive words. The second sub
stage of our word-matching accelerator design is
false-positive elimination, which includes two
objectives:

1) Find all false-positive matches generated by
the Bloom filter;

2) Get the corresponding position information in
the query sequence for true-positive w-mers.

One solution for this sub stage is to use a hash lookup
table. The position information of each w-mer from
the query sequence is stored in the hash table. A
hash table with
1 million entries storing position information for a
100-kbase query sequence requires at least 17 Mbits
of memory space (17 bits are needed to represent 100
k positions). It is clear that the memory required is
significantly greater than that provided by the on-chip
BRAMs. Thus, we store the hash table in an external
SDRAM attached to the FPGA.

Hash collisions and duplicate keys are two common
prob- lems for simple hashing strategies. The former
will hash two different queries to the same
location, while the latter may miss additional
position information. Both of them require extra
access to the off-chip DRAM to get the correct data,
which could introduce potential performance
bottlenecks. In previously reported designs, [1] [2]

 a perfect hash function has been applied to
construct the hash table. A perfect hash function for
a set of n keys maps each key to a distinct table

Fig. 6.Hash Table

entry with no collisions among the keys in the set
is shown in figure 6. However, a perfect function
is not easy to generate, especially when n is
large. In addition, the representation of the perfect
hash function usually needs a significant amount of
FPGA resource and may compete with the Bloom
filter design. The Mercury BLASTN design
implements the hash table using a near- perfect
hashing strategy, which bypasses the constraint
for a perfect hash function. However,
considerable effort is still required to get the “near-
perfect” hash functions. Cuckoo hashing is another
effective hash strategy used to avoid hash collision,
where two independent hash functions are used
for a single hash query. However, the additional
hash table access may reduce the overall
performance and, in rare cases, hash collision can
still appear. In our design, we try a less complicated
approach with few hash collisions, called a bucket
hash.

Our idea works as follows. Although it is difficult to
find a perfect hash for all n keys, it might be easier
to find a perfect hash function for a subset of keys, if
the size of the subset is small enough. Bucket
hashing works as follows. [1] [2]
1) Sort the query w-mers into different buckets
according to their prefix (if the prefix length is
properly chosen, the number of w-mers in a given
bucket is relatively small).

An Improved Efficiently and Computation Time for Hit Detection

goniv Publications Page 37

2) Find a simple hash function that is collision-
free for all w-mers in the same bucket. If it is not
possible to find such a perfect hash function, uses
the hash function with the minimum hash
collisions.
3) Construct a quick lookup table (QLT) which
stores the “collision-free” hash functions for each
bucket.

.5) Stage 3: Redundancy eliminator: To avoid repeated
generation of the same sequence alignment, we go for
this stage. By doing such procedure we can able to
reduce the words. We only eliminate “true
overlapping” words to the registers unit. If two
sequences suggest same alignment matches then one of
those matches can be taken the concept of overlapping.

III. PERFORMANCE
Once the word matching stage gets completed then by
using verilog language and DRC co processor [1] [2] (
i.e. a process supports to the main processor of the
system) the implementation has been performed. The
main processor will be Xilinx Virtex-5 FPGA chip.
The DRC has been considered has a co-processor
because it stores large volume of off-chip data using
the DRC system’s memory which consists of up to 8
GB of DDR2 SDRAM with a maximum bandwidth 3.2
GB/s and 512 MB of low latency RAM with a
maximum bandwidth of 1.4 GB/s. In each clock cycle,
the parallel Bloom filter can receive up to 16 new w-
mers to do the membership examination from local
buffers.

4. ANALYSIS

Our design reports more 15-mer hits compared to
the NCBI BLASTN. In our word-matching
accelerator, the Bloom filter only introduces false –
positive results with no false negatives, which
guarantees no sensitivity loss for the true matches.
The off-chip hash table structure, which covers all
situations (duplicate hits and collision hits can be
examined by looking up the secondary table and the
duplicate table, correspondingly), eliminates all the
false positives from the Bloom filter stage. Thus,
our FPGA design can report all 15-mer hits between
the query sequence and the database sequence. In
fact, the NCBI software is designed to report fewer
hits. It applies several optimizations to accelerate
the word-matching search process. For example, for
a 100 Kbase query, the software first scans the
database sequence for 10-mer matches with step
length two, then ,extends one extra base in both
sides to get a 15-mer match with the search
terminating once a match is found, if a long k-mer
(k>15) match exists,15-mer hit losses will appear.

The lost hits are expected to be re-examined by
the ungapped extension stage which extends hits
base by base in both directions. However,
sensitivity loss might appear due to optimizations
applied in the word-matching stage of NCBI
BLASTN software program. For example, for the
100 kbase query sequence, the hits from our
FPGA design can generate 1270 HSPS, while the
hits from NCBI stage can generate 1212 HSPS.

5. RESULT

Fig.8.simulation result

 The input sequence is a 15 genetic code
represented in hexadecimal format. 1 genetic code
is represented by 24 bits .The query sequence is yet
another 15 genetic code represented in hexadecimal
format from the database .Both the sequences are
compared, if hit is found between any two
sequences output will be 1 else in a case of
mismatch output will be 0.Hence output is a 15 bit
code which represents the hit between the
sequences. The time consumption for comparing 15
genetic code is 300 ns. Refer Fig.8.

6. .CONCLUSION
 In this paper, I have dealt about increasing
the computation time for finding hit detection in
BLASTN using three sub stages, a parallel bloom
filter, an off-chip hash table, and a match redundancy
eliminator. Finding hits is the most computationally
time-consuming step in BLASTN. The performance
is faster than other approach used in other
architectures. The comparison of my technique with
that of NCBI BLASTN shows a better performance
with limited resource utilization

REFERENCES
 [1] .Reconfigurable accelerator for the word-

matching stage of blastn-yupeng chen,bertil
schmidt,senior member,ieee, and douglas
l.maskell,senior member,ieee-1063-
8210/31.00-2012 ieee.

An Improved Efficiently and Computation Time for Hit Detection

goniv Publications Page 38

 [2]. A systolic array-based fpga parallel architecture
for the blast algorithm-xinyu guo,hong wang,and
vijay devabhaktuni-international scholarly
research network-isrn bioinformatics-volume
2012,article id 195658,11 pages
doi:10.5402/2012/195658.

[3]genbank statistics at ncbi [online]. Available:
http://www.ncbi.
Nlm.nih.gov/genbank/genbankstats.html

[4] s. F. Altschul, w. Gish, w. Miller, e. W.
Myers, and d. J. Lipman, “basic local
alignment search tool,” j. Molecular biol., vol.
215, pp.
403–410, feb. 1990.

[5] blast algorithm [online]. Available:
http://en.wikipedia.org/wiki/ blast

[6] p. Karishnamurthy, j. Buhler, r. Chamberlain, m.
Franklin, k. Gyang, a. Jacob, and j. Lancaster,
“biosequence similarity search on the mercury
system,” j. Vlsi signal process. Syst., vol. 49, no.
1, pp. 101–
121, 2007.

[7] z. Zhang, s. Schwartz, l. Wanger, and w. Miller,
“a greedy algorithm for aligning dna
sequences,” j. Comput. Biol., vol. 7, nos. 1–2,
pp.
203–214, 2000.

[8] w. J. Kent, “blat–the blast-like alignment tool,”
genome res., vol.

12, pp. 656–664, mar. 2002.
.

http://www.ncbi/
http://en.wikipedia.org/wiki/

